
I S R A E L  J O U R N A L  O F  M A T H E M A T I C S  SO (1992)t 351-358 

ZERO-DIVISORS IN COMPLETIONS 
OF NON-COMMUTATIVE RINGS 

BY 

DAVID A. JORDAN 

Department of Pure Mathematics, University of Sheffield, 
The Hicks Building, Sheffield $3 7RH, UK 

A B S T R A C T  

We show that it is possible for a regular element of a noncommutative 

Noetherian ring R to become a zero-divisor in the M-adic completion of 

R for a maximal ideal M of R. 

1. Introduction 

Let R be a Noetherian ring with a prime ideal M such that N ,>I  Mr' = 0 and 

let /~ be the M-adic completion of R. If R is commutative and a is a regular 

element of R then it is known that a must remain regular in/~, see [10]. This is a 

consequence of the flatness of R as an R-module which in turn is a consequence 

of the Artin-Rees property. In the non-commutative case it is well known that 

the Artin-Rees property need not hold and it is also known, see [2], tha t /~  need 

not be flat as an R-module. The main purpose of this note is to present, in 

Section 2, an example in which M is generated by a normalizing sequence of 

elements, the first of which becomes a zero-divisor in/~ despite being regular in 

R. In this example R / M  is Artinian and /~  is Noetherian by [8, Theorem 4.2]. 

The example is related to the one we constructed in [5, Section 3], where/~ is 

not Noetherian although the intersection of the symbolic powers of M is zero, 

and, as in [5], the main difficulty in checking the details lies in the verification 

that Nn>l Mn = 0. Although the approach used for this in [5] can be taken here, 
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with greater technical difficulty, we offer an alternative approach, which may be 

of independent interest, based on embedding a certain commutative ring in a ring 

of formal power series. 

Our notation for completions will be standard, as used, for example, in [2, 4, 5, 

6, 8]. When dealing with an Ore extension or ring of formal differential operators 

A[O; 6] over a ring with derivation/~, we shall write coefficients on the left; thus 

Oa = aO + $(a) for all a • A. Any unexplained terminology will be as in [9]. 

1.1. The result below, in the spirit of [4, Proposition 2] and [5, Proposition 2], 

suggests a strategy for constructing an example with the properties described in 

1.0 and offers a different perspective on the failure of flatness for noncommutative 

completions to that  in [2]. 

PROPOSITION: Let R be a r i n g w i t h  amaximal idea l  M such that Nn>l M "  = 0. 

Let ax, a2 be a normalizing sequence of elements of R conta/ned in M such that 

a i M  = M a l  but a~M ~ Ma2 + aiR.  Let R be the M-adic completion of  R. 

Then a2 • a iR.  Consequently, ira2 ~. ax R then f~ is not fiat as a right R-module. 

Proof." Let N = {r E R : ra2 E a2M + aiR}.  Then N is an ideal of R 

and is not contained in M. Thus there exist m E M and n E N such that  

m + n = 1. Write ha2 = a2rn I + air  and real = a im"  where mS, m" E M and 

r E R. We recursively construct two sequences {r/}i>x and {mi}/>__l as follows. 

Set m x =  a2 - axr, rl = r; thus a2 = m x  + air1. Let i > 1 and suppose that  rk 

and rnk have been chosen for 1 < k < i and that mk E M k and a2 = m k  + axrk 

f o r l _ < k < i .  Then 

a2 ~ ~a2 + ha2 
= m(mi -1  -~ a lr i -1)  + a2m t -]- a lr  

= rn(rni-1 + alr i -1)  + (rni-x + a l r i -1)rn '  + a i r  
= (ram,_1 + m,_lm')  + a , (m"r ,_i  + r r.' + r). 

Set ml = mini-1  + m i - l m  s E M i and set ri =- mnri-1 + r im s + r. Thus 

a2 = mi + axri. Note that  r2 - r l  E M and that,  if / > 2, then ri - r i-1 = 

mSS(ri-1 - r i-2)  + (ri-1 - r i -2 )m s. It follows that ri+l - ri e M / for all i > 1 

and hence that  {ri}i>x is a Cauchy sequence in the M-adic topology. Let f be 

the limit of {ri}/>_~ in R. Then a2 - a ~  is the M-adic limit of {a2 - a~ri}i>~ 

which is zero as a2 - alri  = rni • M i. Thus a2 = ax~ • a rk .  If  a2 • a i r  then 

/~ cannot be flat by [12, 1.10.7]. | 
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1.2 Remark: If, in the situation of 1.1, s , t  E R are such that als -~ a2t then, 

with a2 = al~ in ft, al(s - ~t) = 0. This is the basis of our construction, in 

Section 2, where completion does not preserve regularity. 

1.3 QUESTION: /n the situation of 1.1, it is not hard to check that a i r  = 1~al. 

It would be interesting to know whether this ideal must  be closed in R. I f  R is 

Noetherian and R / M  is Artinian then this is true by [3, Lemma 3] or [2, Corollary 

,5]. 

1.4 Example: We present an example where the conditions of 1.1 are satisfied 

and it is easy to explicitly express a2 as a multiple of al in R. 

Let k be a field of characteristic zero, let A = k[z, z] be the commutative 

polynomial ring in two indeterminates and let ~ be the k-derivation z20/Oz + 

(z  + z~)O/cgz. Let R be the Ore extension A[0;g] and observe that z , z ,O is 

a normalizing sequence generating a maximal ideal M of R with R / M  ~_ k. 

Observe that  zR = Rz  but that 6z = z ( 0 + l ) + z  2 so that,  since 0+1  ¢ M and z 

is regular modulo zR,  the conditions of 1.1 are satisfied with al = z and a2 = z. 

It is not obvious that f'J,>l M "  = 0. One approach is to adapt the calculations 

given in [5, Section 3] by substituting 1 for V where appropriate. However the 

approach used in Section 2 will also be applicable and gives a shorter proof, see 

2.11. 

Since 0 E M,/~(M") C M "+1 for all n. Hence 6"(z) E M "+1 for all n. But 

6"(z)  = z + z 2 + 2z s + . . .  + n!z "+1. It follows that if t = 

- ( z  + 2z 2 + . . .  + n]z" + . . . )  is the M-adic limit of the Canchy sequence { - (z  + 

2z 2 + . . .  +n!z")},,_>l then in R , z  = - ( z  2 + 2z s + . . .  + n!z "+1) = z t  E zR.  

1.,5 Remark: Let R, M be as in 1.4. Then/~  is Noetherian by [8, Proposition 

4.2]. Note that,  as z E z.~, ~ / =  z/~ + 0/~. Let P, Q be the prime ideals z R  and 

x R  + zR,  respectively, of R. Let S = R/P,  N = M / P .  As z/~ is closed in J~, see 

1.3, R / z R  is isomorphic to the N-adic completion S of S. But z + P E A,_>I N"  

by [4, Proposition l(iii)] so S - k[[8]]. Thus z/~ is a prime ideal and R is, in the 

sense of [13], a two dimensional regular local ring (it is not difficult to check that 

z is regular in R). Observe that P R  = QI~ and that ~ / h a s  height two whereas 

M has height three. Similar behaviour has been noted in [2]. In fac t /~  can be 

identitied with the completion of its subring T = k[z][8; z20/Oz] at the maximal 

ideal z T  + OT, w i t h  z = - ( z  2 + 2z s + . . . ) .  This consists of formal power series 

in z and 8 subject to the homogeneous relation 8z = z6 + z 2. 
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1.6 QUESTION: Let R be Noetherian with a maximal ideal M generated by 

a normalizing sequence al ,a2, . . .  ,a,. In view of 1.5, it woutd be interesting ~o 
^ ^ 

know whether, in R, M is generated by a normal/zing sequence consisting oi- those 

ai for which aiM = Mai + ( a i r  + . . .  + ai-lR).  A positive answer to Question 

1.3 would have some bearing on this question. 

2. S p e c i f i c a t i o n  o f  t h e  m a i n  e x a m p l e  

Throughout this section, A will denote the commutative domain 

k[X,Y,Z,  T I / ( X Y  - ZT)  = k[z ,y ,z , t  : zy = zt] 

where k is a field of characteristic zero, X, Y, Z and T are indeterminates and 

x, y, z and t are their respective images in the factor ring. The element X Y  - Z T  

is annihilated by the k-derivation Z20/OZ + (X  + Z2)O/OX + ( - Y  + Z2)O/OY + 

Z ( X  + Y - T)O/OT of k[X, Y, Z, T] and so there is an induced k-derivation 6 of 

A satisfying 

5 ( z ) = z  2, 5 ( z ) = x + z  2, 5 ( y ) = - y + z  2 and 5 ( t ) = z ( z + y - t ) .  

Let B be the localization of A at the set {zi}i>l. Then t = zyz  -1 and B = 

k[z, z -1, x, y]. The derivation 5 extends to B by the quotient rule and we denote 

the extension by 5. 

Let R be the ring A[0; 5], a Noetherian domain. Then R has a maximal 

ideal M generated by the normalizing sequence z, z, y, t, 0. We shall show that 

N,>I  M "  = 0 and that z is a zero-divisor in the M-adic completion// .  

2.1. The first step in showing that N,,>I M "  = 0 is to show that  B is 5-simple 

and hence that every g-stable ideal of A contains a power of z. The following 

result, due to Shamsuddin [11], is useful in this respect. 

PROPOSITION: Let S be a commutative domain, containing Q, with a derivation 

5 such that S is 5-simple. Let s, t 6 S. Extend 5 to the polynomial ring 5[z] by 

setting 5(z) = sz + t. Then SIx] is 5-simple if 5(r) ~ sr + t for all r e S. 

Proof: To our knowledge, the only sources for this result are the Leeds PhD 

theses of Shamsuddin [11] and Archer [1] so we give an outline of the proof. 

Suppose that there exists a non-zero 5-stable proper ideal J of Six] and let n 
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be the minimal degree in z of non-zero dements of J .  The leading coefficients 

of elements of J of degree n, together with 0, form a/~-stable ideal of S so J 

must contain an element g of the form z"  + az "-1 + . . .  + b. By minimality of 

n, 6(g) - nsg = 0 and, comparing coefficients of z " - I ,  ~(a) = sa - nt, whence 

6(r) = sr + t where r = - a / n .  | 

2.2 PROPOSITION: The ring B is 6-simple and consequently every non-zero 6- 

stable ideal of A contains a power of z. 

Proof." Let B1 = k[z,z  -11 and B2 = Bl[z] so that  B = B2[u]. Observe that  

restricts to k-derivations, also denoted 8, of B1 and B2. It is easy to check that 

B1 is 6-simple and that r + z 2 # 6(r) for all r 6 B1. By 2.1, B2 is 6-simple. 

Now suppose that B1 has an dement  r satisfying 6(r) = - r  + z 2. Set B3 = 

k[z,z] and write r = p z - "  where p E B s , m  > 0 and if m > O,p ~ zBs. 

Then 6(r) = 6(p)z -m - rnpz ' - m  whence 6(p) - mpz = - p  + z 2 + ' ,  that  is, 

z2OplOz + (z + z2)aplOz - rnpz = - p  + z 2+m. Passing to the factor ring B3 = 

Bs/zBs,~O-~/~t-~ = - p  and it follows that ~ = 0. Thus p 6 zB3 and so m = 0 

and r E Bs. Now let B4 be the overring k[zi[[zl] of B3 to which 6 extends in an 

obvious way. Consider the element q = z 2 - 2z 3 + 6z 4 - 24z 5 + . . .  of B4. Then 

6(q) = - q  + z 2 so ~(r - q) = q - r. But it is easy to check, comparing coefficients 

in k[z] of powers of z, that  the only element b of B ,  satisfying 6(b) = - b  is 0. 

Hence r = q. But q ¢ B3 so we have a contradiction and, by 2.1, B is ~-simple. 

The consequence is immediate. | 

2.3. The following result, which has a routine proof, will allow us to check that 

Nn>l Mn -- 0 by passing to an overring. 

PROPOSITION: Let A, C be rings, let f : A ~ C be a ring homomorphism and 

let 6, 7 be derivations of A, C respectively such that 7 f  = fS. Then 

(i) the kerne /o[  f is ~-stable; 

(ii) i f  f is injective then it can be extended to an injective ring homomorphism 

f : A[e; ~1 --, C[e; 7] with f(O) = e. 

2.4. We aim to apply 2.3 to the ring A and derivation/~ specified in 2.0. Let C 

be the formal power series ring k[[z]] and let 7 be the k-derivation z20/Oz of C. 
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LEMMA: There is an injective ring homomorphism f : A ~ C given by 

f ( z )  = z; 
f ( x )  = - z  2 - 2 z  a - 6 z  4 - 2 4 z  s . . . .  ; 
f (y )  = z 2 - 2 z 3 + 6 z 4 - 2 4 z S + . . . ;  

f ( t )  = f ( x ) f ( v ) / z  , 

and satisfying 7 f  = f6. 

Proof." Clearly there is a ring homomorphism f as specified. Let fl = 7 f  - f6. 

If C is viewed as an A-module by means of f in the usual way, then fl is a k- 

derivation from A to C, as defined in [7,p190]. One easily checks that ~(x) = 

fl(y) = /~(z) = /~(t) = 0 and so, as these elements generate A as a k-algebra, 

/~ = 0. Thus 7 f  = f& By 2.3(i), the kernel of f is 6-stable. Since f ( z  m) # 0 for 

all m, it follows from 2.2 that f is injective, l 

2.5 PROPOSITION: Nn>l Mn = O. 

Proof." By 2.3(ii) and 2.4 the injective homomorphism f specified in 2.4 extends 

to an injective homomorphism f : R ~ S where S = C[0; 7] and C, 7 are as in 

2.4. Let N = zC + 0C, a maximal ideal of C. Since 0z - z0 = z 2 any element of 

N"  must be a linear combination of monomials ziO j with i + j  >_ n. Consequently 

f],,>__l N "  = 0. But f ( M )  C_ N so, since f is injective, f],,>l M "  = 0. | 

2.6. PROPOSITION: The regvdar normM element z of R becomes a zero-d/visor 

in the M-ad/c completion R. 

Proof." As in 1.4, x = z £ w h e r e £ = - ( z + 2 z  2 + . . . + n ! z  n + . . . )  E R. But 

zy = zt so z(t + z!i + 2zy 2 + 6zSy + . . . )  = 0. Routine calculations show that  

M 2 N A is generated by x, y, z 2 and t 2. Thus t ~ M 2 and, since ziy E M 2 for 

i >_ 1, t + z l /+  2z2y + 6z3y + . . .  # 0 in R. | 

2.7 Remark: As in 1.5, one can check t ha t /~  is Noetherian, that  zR is a prime 

ideal with R / z R  ~_ k[[t, 0]] and that JQ = z/~ + t/~ + 0/~. With f ,  C, S and N as 

in 2.4 and 2.5, f ( M )  C_ N so that there is an induced m a p / :  h -~ L The ring 

is a d o m ~  by [8, proof of 4.3] and [6, Theorem 1] so .f is not injective. 
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2.8 QUESTION: The normalizing sequence generating M in our example is not 

regu/ar, x not being regular modulo zR. It would be interesting to know whether 

the behaviour described in 2.5 and 2.6 can occur when M is generated by a 

regular normalizing sequence. It is not hard to construct such sequences in such 

a way that the first term becomes a zero-divisor in the completion but in all such 

examples which we have computed N.>_x Mn ~ O. 

2.9 Remark: It is interesting to contrast the situation here, where the first term 

in the normalizing sequence loses regularity, with that of [6]. There, a crucial 

point in the proof that if I is a completely prime ideal of R generated by a 

regular normalizing sequence and satisfying the Artin-Rees property then the 

I-adic completion of R is a domain is that the first term in the sequence of 

generators is regular in the completion. 

2.10 Remark: Note that, in our example, 6(t) 6 zA  + x A  + yA. It follows that 

P = z R  + x R  + yR  + OR is a prime ideal of R with factor isomorphic to k[t]. 

Since A,>I M" = 0, N,>x P"  = 0. The element z is also a zero-divisor in the 

P-adic completion of R. It can easily be checked that, although N,>I M" = 0, z 

is in the intersection of the symbolic powers of P. 

2.11 Remark: Return to the example of 1.4. The method used in 2.5 can be 

applied to show that N,>I M" = 0 in this ring also. Here the proof is much 

shorter with the ~- simplicity of B2, established in the first few lines of the proof 

of 2.2, replacing that of B and with 2.3 applied with C, 7 and f as in 2.4 but 

ignoring y and t. This approach is also applicable to the ring of [5, Section 3], 

where it gives a shorter proof of [5, Propostion 9]. 
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